
Writing 3 - Team 14
Karim Alami, Philip DiGiorgio, Brandon Harvey, Samuel Fritz

Product Specifications

User Stories

As an Ultimate Frisbee Fan, I would like to predict possible outcomes of matches between
different AUDL teams so I can learn more about the sport and which teams are more likely to
win the league.

As an Ultimate Frisbee Fan, I would like to customize match settings such as temperature,
windspeed, precipitation, and humidity parameters, in order to see how different teams would
perform against each other under different weather conditions.

As an Ultimate Frisbee Fan, I would like to view a live prediction feed for current and upcoming
games so I can get an idea of who is most likely to win in the given real-time conditions.

As an Ultimate Frisbee Fan, I would like to view in depth details about how each prediction is
being calculated, so I can understand the factors that determine the prediction.

As an Ultimate Frisbee Fan, I would like to create my own custom Ultimate Frisbee Predictions
using real teams or made-up teams, so I can see how different players and teams perform
against each other.

As an Ultimate Frisbee Fan, I would like to create my own custom teams from a selection of all
past and current players when creating a custom prediction, so I can create impossible matchup
scenarios.

Flow Diagram

Mockups and Wireframes
Landing page:

Input form (User creating a prediction):

Prediction Output (Prediction generated based on user input):

Technical Specifications

System Diagrams

When a user first tries to enter the site, a DNS lookup is performed, after which a simple GET
request is made to the HTTP server that serves the React application. The application is sent to
the client’s browser, after which point it is used to request data from the server. When a
prediction is requested, the cached predictions are checked to see if the prediction was already
performed recently. If so, the previous result is returned. If not, the backend requests the
prediction API for the new matchup. This result is then returned to the front end and displayed to
the user, getting cached along the way.

The data parser retrieves new data from the external data sources on a daily basis and updates
the database accordingly. This data is used directly in the prediction engine and in the
application to display data.

External Frameworks and APIs
Our project uses a few pieces of external technology. These are all used to build up either the
core of the application or to simply the development of another piece. Each is listed below:

AWS EC2:
Our project will be deployed onto an AWS EC2 instance. This enables us to have the project
available for public use in the future, and it gives us a centralized database that we can use
during development. Specifically, we will use this instance to have a MySQL database that each

developer can connect to and get the most up to date data during development. When it comes
to deploy our application, this will serve as the central point of availability, with the specific
deployment broken up into different containers.

Docker:
To aid in the deployment of the many different pieces of the application, we will use Docker to
have images for each of the different components of the application. The key benefit provided to
us by using Docker is the containerization of each component. This will allow us to ensure that
tests in development do not cause the entire server to crash and to scale deployments based on
demand.

Node.js + Sequelize:
Node.js is our back end for our application. This will serve as the connective piece between the
database and public endpoints. It will expose routes that enable the front end to retrieve the
necessary data for display on the interface

Sequelize is the Object Relational Mapping (ORM) that we are using to handle the interfacing
between Javascript objects and MySQL tables. We are using this so that we can easily interact
with the data in the tables in an easy to use object format and simplify the development time of
database communication.

React:
React will be used to render the front end for our application. It will allow for dynamic inputs and
updates in an easy to use manner, allowing the application display to be easily updated.

Visual Crossing API:
Goal:

● Get temperature, windspeed, precipitation, and humidity data from all past AUDL
games as well as forecast data for upcoming games.

Description:
This API is used in the weather folder in the code. There is a separate script used
to collect and store data from all past AUDL games. The parameters location and
startTime for this script are gathered from game data files stored on a local
system while the parameter endTime is computed automatically. This API will
also be used to gather and update forecast data for upcoming games every 24
hours (To be implemented in the future).

Endpoints Used:
● GET /VisualCrossingWebServices/rest/services/weatherdata/history
● GET /VisualCrossingWebServices/rest/services/weatherdata/forecast

Scikit-learn:

This will be used in order to implement a Support Vector Machine with reliability in Python 3
allowing for easier implementation and testing of various features available based on previous
game data to give a reliable outcome as to which team is predicted to win.

All of these external frameworks and APIs are necessary in order to facilitate the development
of the application. Of note, only the AWS EC2 instance incurs a cost for development. However,
this cost is very low (estimated around $250 with AWS Pricing Calculator).

Algorithms
Support Vector Machine (SVM) ML Algorithm (Using Sci-kit Python Library):
The main algorithm used for our prediction engine is an SVM model structured using the
scikit-learn python library that takes in data from our database in the form of a 2-D array
containing a list of samples with a certain number of features along with a 1-D array of targets
which signify the team that each of the sames in the 2-D array refers to. After the model is fitted,
it uses the built-in predict() function to output which team will be predicted to win based on the
parameterized features compared to the SVM.

This algorithm is the key part of the application, as it is how the predictions are made for
matchups. Success for the algorithm can be measured by ensuring that a prediction can be
made for two inputted teams and a selection of weather factors, ultimately giving a projected
winner.

