U.P.E (Ultimate Prediction Engine) - Technical Design

Brandon, Karim, Philip, Samuel

Overview and System Goals

- Ultimate Frisbee Prediction App for the AUDL (American Ultimate Disc League)
- Web Application built around a prediction engine
 - Weather conditions during past games + team and player records from previous seasons
- Provide Ultimate Frisbee Fans with accurate game predictions for the upcoming season
- Live Updates for Game Predictions as they occur

Database Backend **API** Communication nøde Server (s) Frontend React HTTPS V Data Parser Live updates Neural Network Sequelize ORM Interactive inputs K Keras **Tensor**Flow HTTPS MySQL External data Visual crossing

Data Handling

- Database design
- Data scraping
 - AUDL
 - Visual Crossing API requests
- Data cleaning and verification
- Constant updates to data stores

Technologies Used

- Node.js Backend
- React Frontend
- AWS EC2 Cloud platform
- MySQL data server
 - Sequelize ORM
- Python (TensorFlow Library and Keras API) for ML algorithm

AUDL Integration to Neural Network

Completed

- Player Statistics
 - Completions
 - Hucks
 - Drops
 - Points Scored
- Team Statistics
 - Wins
 - Losses
 - Score

Future

- Comparisons on ideal data
- Compare in conjunction with weather data
- Integrating into model
- Determining best statistics for model

{"playerID":"labramows", "firstName":"Lou", "lastName":"Abramowski",
"completionPercentage":null, "Goals":0, "assists":1, "plusMinus":-3, "gamesPlayed":7,
"minutesPlayed":39, "pointsPlayed":51, "huckPercentage":null, "drops":0, "Throwaways":5,
"blocks":1}

Weather Integration to Neural Network

- Weather Data from Visual Crossing Weather API
 - Multiple 15 minute intervals during past games
 - Average weather conditions for each game
 - Temperature
 - Precipitation
 - Windspeed
 - Humidity
- Average weather conditions for each team's home field
 - Information on types of weather conditions that each team has experience with
- Integration with Player and Team Data

·

Structure of ML Algorithm (Data)

- Sequential model using Keras API that trains data from our database to predict game outcomes
 - Train data consists of both individual game statistics as well as general season statistics (As previously mentioned in DB design)
 - These data inputs will be weighted automatically by the model to determine the best possible fit/distribution
 - Non-numerical data (Such as Home/Away team name in Game data) converted into numerical data using OneHotEncoder (Sklearn)
 - Dependent variable(Win/Loss)

Structure of ML Algorithm (Layers)

- ANN Layers will use ReLU as an activation function (Very adaptable)
- Output layer will use sigmoid function (For probabilistic output)
- Training loop to fit the model and measure accuracy

Future Components

- Two models in development
 - AUDL Teams and Weather Karim
 - AUDL Players and Weather Brandon
- Compare both for accuracy and latency
 - Split historical data in a train-test split and compare to output

- Front end design Samuel
 - Setup of input and prediction output
- Backend design Philip
 - API development
 - Data distribution

Alpha Prototype

- Database and server set up and available
- Basic predictions using a subset of the data
 - A few factors from players
 - One or two weather points
 - A few factors from teams
 - Player and team calculations separate initially
- Basic GUI and output
 - Small input form for a few factors
 - Prediction little to no breakdown... yet
- Only 2 layers when implementing NN (Adding more layers in future models)
- Largely focusing non-client side

Technical Challenges and Risks

- Model prediction accuracy (Counter by performing a large number of training generations but might be costly)
- Incomplete field location data (Manual research)
- New vs veteran players and teams
- Frequent change in players on teams
- Unknowns
 - Coaches on each team
 - Incomplete player data

Questions?